报告人:诸葛金平 副研究员 中国科学院数学所晨光数学中心
时间:5月15日上午9:15-9:55
地点:数学楼112会议室
题目: Nodal sets of eigenfunctions in quasiconvex Lipschitz domains
摘要:
Estimating the size of the nodal sets for the eigenfunctions of elliptic operators is a classical unique continuation problem, which has had several breakthroughs recently due to A. Logunov’s work. In this talk, I will present our recent work on the estimate of nodal sets in quasiconvex Lipschitz domains which generalizes the corresponding result in $C^1$ domains by Logunov-Malinnikova-Nadirashvili-Nazarov (GAFA, 2021). The quasiconvex Lipschitz domains is a unified class of Lipschitz domains that contains both $C^1$ and convex domains. Particularly, our result is new and sharp for Laplace operator in convex domains. This is a joint work with Jiuyi Zhu.
报告人简介:
诸葛金平,中国科学院晨兴数学中心副研究员。2019年博士毕业于美国肯塔基大学,师从申仲伟教授。2019年9月至2022年6月在芝加哥大学数学系任Dickson Instructor. 主要研究领域为偏微分方程的均匀化理论, 在Comm. Pure Appl. Math., J. Eur. Math. Soc., Math. Ann., Adv. Math., Arch. Ration. Mech. Anal., J. Funct. Anal., J. Math. Pures Appl.等国际著名数学期刊发表论文10余篇。