报告人:李进开 研究员 华南师范大学
时间:5月15日上午8:30-9:10
地点:数学楼112会议室
题目: Some mathematical analyses on dynamical models for atmosphere with moisture
摘要:
In this talk, I will present some recent mathematical results, mainly the global wellposedness and convergence of the relaxation limit, on two kinds of dynamical models for the atmosphere with moisture. In the first part m,we will consider a tropical atmosphere model introduced by Frierson, Majda, and Paulus (Commum.Math.Sci.2004); for this model, we will present the global well-posedness of strong solutions and the strong convergence of the relaxationlimit, as the relaxation time tends to zero. It will be shown that, for both the finite-time and instantaneous-relaxation systems, the H1 regularities on the initial data are sufficient for both the global existence and uniqueness of strong solutions, but slightly more regularities than H1 are required for both the continuous dependence and strong convergence of the relaxation limit. In the second part of this talk, we will consider moisture models for warm clouds used by Klein and Magda (Theor. Comput. Fluid Dyn. 2006), where the phase changes are allowed, and we will present the global Well-posedness for these systems.
报告人简介:
华南师范大学数学科学学院研究员,博士生导师。2018年入选国家海外高层次人才引进计划青年项目。2013年博士毕业于香港中文大学数学科学研究所,导师为辛周平教授。2013至2016于以色列威兹曼科学研究所(Weizmann Institute of Sciences)从事博士后研究工作,合作导师为EdrissS. Titi教授。2018年入选“国家海外高层次人才引进计划”青年项目,曾获得“2020世界华人数学家联盟最佳论文奖”金奖(2020 ICCM Best Paper Award)以及“第二届中国科协优秀科技论文”奖,2022年入选“国家高层次人才特殊支持计划”科技创新领军人才。主要从事流体动力学方程方面的研究,主要包括大气海洋动力学偏微分方程(以Primitive Equatgions为代表)、Navier-Stokes方程组、复杂流体等。目前已在包括CPAM, Adv. Math, JFA, ARMA, CPDE, SIMA等国际学术期刊上发表SCI论文40篇。